Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electrical and Electronics Engineering BME405 & Thermal Engineering &Fluid Mechanics FourthSemester (Even Semester)

Course (catalog) description

To understand the concepts of Energy in general and Heat and Work in particular, to understand the fundamentals of quantification and grade of energy, to understand fluid statics and fluid dynamics and to study the applications of mass, momentum and energy equation in fluid flow

Compulsory/Elective course:Compulsory for EEE students

Course Coordinator : Mr.Ravi

Instructors : Mr.Ravi

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Mr.Ravi	Second year EEE	KS 101	04422290125	hod.mech@bharathuniv.ac.in	12.30-1.30 PM

Relationship to other courses:

Pre –requisites : BME 203 (Basic Mechanical Engineering)

Syllabus Contents

UNIT I BASIC CONCEPTS AND LAWS OF THERMODYNAMICS 9

Systems zeroth law, first law of thermodynamics – concept of internal energy and enthalpy applications of closed and open systems, second law of thermodynamics – concept of entropy – clausius inequality and principle of increase in irreversible processes.

9

9

UNIT II IC ENGINE AND COMPRESSORS

Basic IC engine and gas turbine cycles, compressors – single stage Multi stage, reciprocating, vane gear, roots, compressor(constructional features and applications only).

UNIT III THERMODYNAMICS OF REFRIGERATORS AND PUMPS 9

Properties of steam – Rankine cycle – one dimensional flow through nozzles and applications to jet and rocket propulsions – basic thermodynamics of refrigerators and heat pumps.

UNIT IV BASIC CONCEPTS AND FLOW OF FLUIDS

Introduction – classification – types of fluids – properties – properties – law of pressure – manometer – mechanical gauges – types of fluid flow – continuity equation – energy equation – Beroulli's theorem – orifice and mouth piece.

UNIT V DIMENSIONAL AND MODEL ANALYSIS

Introduction – dimensional analysis – Rayleigh's method and Bukingham's method – similitude dimensionless numbers – model studies, pump turbines – type of pumps – reciprocating pumps – constructional details – coefficient of discharge – slip – power required – centrifugal pump – working principle – working principle.

Text book(s) and/or required materials

- 1. Nag P.K, "Engineering Thermodynamics", Tata McGraw Hill, Fourth Edition, 1993.
- 2. Kothandaraman C.P, "Thermal Engineering", Dhanpat Rai and Co, 2013
- 3. Kumar K.L. "Fluid Mechanics" Eurasia Publishers, 1990.

Rajput R.K., "Fluid Mechanics and Hydraulic Machines", S. Chand & Co. India, 1998

Reference Books:

- 1. Shames I.H. "Mechanics of Fluids", Kogakusha Publications. Tokyo 1998.
- 2. Reynolds, "Thermodynamics", McGraw Hill Publications, 1996

Computer usage:

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 18	2 Periods
2	2 Cycle Test-2 March 2nd week		Session 19 to 36	2 Periods
3	Model Test	April 3rd week	Session 1 to 45	3 Hrs
л	University	ТВА	All sessions / Units	3 Hrs.
4	Examination			

Mapping of Instructional Objectives with Program Outcome

		Correlate	es to program	
To understand the concepts of Energy in general and Heat and Work		outcome		
in particular, to understand the fundamentals of quantification and grade of energy, to understand fluid statics and fluid dynamics and to study the applications of mass, momentum and energy equation in fluid flow	Н	Μ	L	
1. To understand a thermodynamic system, closed and open systems, state, equilibrium, process, cycle and system properties, thermo dynamic laws and apply it to solve problems.		C,e,g,j,l	а	
2. To study and analyze the efficiency of IC engines and compressor and to solve problems.	E,f,I	G,h,j	а	
3. To understand the thermodynamics of refrigerators and heat pumps	B,e,f,l	j	A,g,h	
4. To study the fluid flow and the various theorems and concepts associated with that.	B,e,f,l	A,h,j	C,g	
5. Ability to understand to identify, formulate, and to solve problems of dimensional analysis, pumps and turbines	E	B,c,g,j,l	A,k	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

S.NO	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I	BASIC CONCEPTS AND LAWS OF		
THERMO	DYNAMICS		
1.	Systems zeroth law	Yes	
2.	first law of thermodynamics	Yes	-
3.	first law of thermodynamics	Yes	_
4.	concept of internal energy and enthalpy	Yes	
	applications of closed and open systems		11,KZ
5.	concept of internal energy and enthalpy	Yes	-
	applications of closed and open systems		
6.	second law of thermodynamics	Yes	-
7.	concept of entropy	Yes	-
8.	clausius inequality and principle of increase in	Yes	_
	irreversible processes		
9.	clausius inequality and principle of increase in	Yes	-
	irreversible processes		
UNIT II	IC ENGINE AND COMPRESSORS		
10.	Basic IC engine and gas turbine cycles	Yes	T2,T1
11.	Basic IC engine and gas turbine cycles	Yes	-
12.	compressors	Yes	_
13.	single stage Multi stage	Yes	_
14.	single stage Multi stage	Yes	
15.	reciprocating	Yes	
16.	vane gear	Yes	
17.	roots	Yes	
18.	compressor(constructional features and	Yes	
	applications only)		
	I HERWIODYNAMIUS OF REFRIGERATORS	AND PUMPS	T2 T1
19.		res	13,11
20.	Properties of steam	Yes	_
21.	Rankine cycle	Yes	4
22.	Rankine cycle Page 4 of 8	Yes	
23.	one dimensional flow through nozzles and	Yes	

	applications to jet and rocket propulsions			
24.	one dimensional flow through nozzles and	Yes		
	applications to jet and rocket propulsions			
25.	one dimensional flow through nozzles and	Yes		
	applications to jet and rocket propulsions			
26.	basic thermodynamics of refrigerators and heat	Yes		
	pumps			
27.	basic thermodynamics of refrigerators and heat Yes			
UNIT IV	BASIC CONCEPTS AND FLOW OF FLUIDS			
28.	Introduction	Yes	T1,R1	
29.	classification	Yes		
30.	types of fluids	Yes		
31.	properties			
32.	law of pressure ,manometer	Yes		
33.	mechanical gauges – types of fluid flow	Yes		
34.	continuity equation Yes			
35.	energy equation – Beroulli's theorem	Yes		
36.	orifice and mouth piece.	Yes		
UNIT V	DIMENSIONAL AND MODEL ANALYSIS			
37.	Introduction – dimensional analysis	Yes	T2,T1	
38.	Rayleigh's method and Bukingham's method	Yes		
39.	similitude dimensionless numbers	Yes		
40.	model studies, pump turbines	Yes		
41.	type of pumps	Yes		
42.	reciprocating pumps	Yes		
43.	constructional details – coefficient of discharge	Defficient of discharge Yes		
44.	slip – power required – centrifugal pump	Yes		
45.	working principle – working principle.	Yes		

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	05%
Cycle Test – II	-	05%
Model Test	-	10%
Attendance	-	05%
SEMINAR&ASSIGNMENT	-	05%
Final exam	-	70%

Prepared by: Mr.Ravi

Date:

Addendum

ABET Outcomes expected of graduates of B.Tech / EEE / program by the time that they graduate:

- a) An ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) An ability to identify, formulate, and solve engineering problems.
- c) An ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d) An ability to design and conduct experiments, as well as to analyze and interpret data.
- e) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- f) An ability to apply reasoning informed by the knowledge of contemporary issues.
- g) An ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- h) An ability to understand professional and ethical responsibility and apply them in engineering practices.
- i) An ability to function on multidisciplinary teams.
- j) An ability to communicate effectively with the engineering community and with society at large.
- k) An ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- 1) An ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION

Electrical Engineering Graduates are in position with the knowledge of Basic Sciences in general and Electrical Engineering in particular so as to impart the necessary skill to analyze and synthesize electrical circuits, algorithms and complex apparatus.

PEO2: CORE COMPETENCE

Electrical Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics related to power, information and electronics hardware.

PEO3: PROFESSIONALISM

Electrical Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative acumen so as to be able to handle critical situations and meet deadlines.

PEO4: SKILL

Electrical Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Electrical Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

Course Teacher	Signature
Mr.Ravi	

Course Coordinator

(Mr.Ravi)

HOD/EEE

()